Jul 18 2016
From The Space Library
MHeimbecker (Talk | contribs)
(New page: ''RELEASE 16-078'' '''NASA Sends Trailblazing Science, Cargo to International Space Station Aboard SpaceX Resupply Mission''' Instruments to perform the first-ever DNA sequencing in spac...)
Newer edit →
Revision as of 19:32, 18 July 2016
RELEASE 16-078 NASA Sends Trailblazing Science, Cargo to International Space Station Aboard SpaceX Resupply Mission
Instruments to perform the first-ever DNA sequencing in space, and the first international docking adapter for commercial spacecraft, are among the cargo scheduled to arrive at the International Space Station after Monday’s launch of the SpaceX Commercial Resupply Services-9 (CRS-9) mission.
SpaceX’s Dragon cargo craft launched at 12:45 a.m. EDT on a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida with almost 5,000 pounds of cargo. The spacecraft will be grappled to the space station at 7 a.m. Wednesday, July 20, by NASA astronaut Jeff Williams, supported by NASA astronaut Kate Rubins.
“Each commercial resupply flight to the space station is a significant event. Everything, from the science to the spare hardware and crew supplies, is vital for sustaining our mission,” said Kirk Shireman, NASA’s International Space Station Program manager. “With equipment to enable novel experiments never attempted before in space, and an international docking adapter vital to the future of U.S. commercial crew spacecraft, we’re thrilled this Dragon has successfully taken flight.”
The mission is the company's ninth cargo flight to the station under NASA’s CRS contract. Dragon's cargo will support dozens of the more than 250 science and research investigations during the station’s Expeditions 48 and 49.
DNA testing aboard the space station typically requires collecting samples and returning them to Earth. The Biomolecule Sequencer seeks to demonstrate, for the first time, that DNA sequencing is feasible in microgravity using a crew-operated, miniaturized device to identify microbes, diagnose diseases, monitor crew health and possibly help detect DNA-based life off the Earth.
Maintaining safe temperatures is difficult in space where there is no atmosphere to moderate the extreme heat and cold provided by direct, unfiltered sunlight. The Phase Change Heat Exchanger, a NASA investigation to test temperature control technology for future spacecraft, uses a continual process of freezing and thawing to maintain temperatures inside a spacecraft, thereby protecting crews and equipment.
The crew also will test a new efficient, three-dimensional solar cell.
Millions of Americans experience bone loss resulting from disease or the reduced effects of gravity that can occur in immobilized patients. New ground-based studies are using magnetic levitation equipment to simulate these gravity-related changes. Research delivered under the station’s role as a U.S. National Laboratory includes OsteoOmics, a test to determine whether magnetic levitation accurately simulates the free-fall conditions of microgravity by comparing genetic expression in different types of bone cells.
Improved understanding of the mechanisms behind bone loss could lead to better ways to prevent it during space missions. This also could contribute to better prevention of, and treatments for, bone loss as a result of diseases like osteopenia and osteoporosis, or from prolonged bed rest.
Another National Lab investigation called Heart Cells studies how microgravity changes the human heart, and how those changes vary from one individual to another. Future exploration of the moon, asteroids or Mars will require long periods of space travel, which creates increased risk of health problems such as muscle atrophy, including possible atrophy of heart muscle. Heart cells cultured aboard the space station for one month will be analyzed for cellular and molecular changes. Results could advance the study of heart disease and the development of drugs and cell replacement therapy.
Dragon is scheduled to depart the space station Monday, Aug. 29. After splashdown in the Pacific Ocean, west of Baja California, more than 3,300 pounds of science, hardware, crew supplies and spacewalk tools will be returned to shore.
For more than 15 years, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth that will enable long-duration human and robotic exploration into deep space. A truly global endeavor, more than 200 people from 18 countries have visited the unique microgravity laboratory that has hosted more than 1,900 research investigations from researchers in more than 95 countries.
MEDIA ADVISORY M16-087 NASA Scientists to Discuss 2016 Climate Trends, Impacts
Climate experts from NASA will discuss recent trends in global temperatures and Arctic sea ice, as well as research now underway to better understand their impacts, during a media teleconference at 1 p.m. EDT Tuesday, July 19.
NASA scientists track global temperature and sea ice data as part of the agency's mission to better understand our changing planet. The agency’s Goddard Institute for Space Studies (GISS) in New York will release its analysis of June global surface temperatures prior to this teleconference.
The teleconference participants are:
- Gavin Schmidt, GISS director
- Walt Meier, sea ice scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland
- Nathan Kurtz, project scientist for NASA's Operation IceBridge at Goddard
- Charles Miller, deputy science lead for the Arctic Boreal Vulnerability Experiment (ABoVE) at NASA's Jet *Propulsion Laboratory in Pasadena, California
To participate, media must email their name and affiliation to Sean Potter at sean.potter@nasa.gov by 11 a.m. Tuesday. Media and the public also may ask questions during the briefing on Twitter using the hashtag #askNASA.
MEDIA ADVISORY M16-074 NASA Selects Five Mars Orbiter Concept Studies
NASA has selected five U.S. aerospace companies to conduct concept studies for a potential future Mars orbiter mission. Such a mission would continue key capabilities including telecommunications and global high-resolution imaging in support of the agency’s Journey to Mars.
The companies contracted for these four-month studies are: The Boeing Company in Huntington Beach, California; Lockheed Martin Space Systems in Denver; Northrop Grumman Aerospace Systems in Redondo Beach, California; Orbital ATK in Dulles, Virginia; and Space Systems/Loral in Palo Alto, California.
“We’re excited to continue planning for the next decade of Mars exploration,” said Geoffrey Yoder, acting associate administrator for NASA’s Science Mission Directorate in Washington.
The concept studies will address how a potential new Mars orbiter mission could best provide communications, imaging and operational capabilities. They also will assess the possibilities for supporting additional scientific instruments and functionalities, in addition to optical communications. The orbiter concept under study would take advantage of U.S. industry’s technology capacities by using solar electric propulsion to provide flexible launch, mission and orbit capabilities.
The Mars Exploration Program Analysis Group, an organization designed to provide input to NASA from the Mars research science community, published a report six months ago on recommended science objectives for a Mars orbiter. These studies will provide input for assessing the feasibility of addressing these objectives. NASA also is pursuing partnership interest in contributing to this potential mission.
NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, is managing the concept studies under the direction of the agency’s Mars Exploration Program.
NASA is on an ambitious Journey to Mars that includes sending humans to the Red Planet in the 2030s. The agency’s robotic spacecraft are leading the way, with two active rovers, three active orbiters, the planned launch of the InSight lander in 2018, and development of the Mars 2020 rover.