Nov 7 2014

From The Space Library

Jump to: navigation, search

RELEASE 14-308 NASA Tests Revolutionary Shape Changing Aircraft Flap for the First Time

NASA's green aviation project is one step closer to developing technology that could make future airliners quieter and more fuel-efficient with the successful flight test of a wing surface that can change shape in flight.

This past summer researchers replaced an airplane’s conventional aluminum flaps with advanced, shape-changing assemblies that form seamless bendable and twistable surfaces. Flight testing will determine whether flexible trailing-edge wing flaps are a viable approach to improve aerodynamic efficiency and reduce noise generated during takeoffs and landings.

The Adaptive Compliant Trailing Edge (ACTE) project is a joint effort between NASA and the U.S. Air Force Research Laboratory (AFRL), using flaps designed and built by FlexSys, Inc., of Ann Arbor, Michigan. With AFRL funding through the Air Force’s Small Business Innovative Research program, FlexSys developed a variable geometry airfoil system called FlexFoil that can be retrofitted to existing airplane wings or integrated into brand new airframes.

FlexFoil’s inventor, FlexSys founder and Chief Executive Officer Sridhar Kota hopes testing with the modified Gulfstream III will confirm the design’s flight worthiness and open doors to future applications and commercialization. ACTE is being flown at NASA's Armstrong Flight Research Center in Edwards, California.

“This flight test is one of the NASA Environmentally Responsible Aviation (ERA) Project’s eight large-scale integrated technology demonstrations to show design improvements in drag, weight, noise, emission and fuel reductions," said Fay Collier, ERA project manager at NASA’s Langley Research Center in Hampton, Virginia.

During the initial ACTE flight, the experimental control surfaces were locked at a specified setting. Different flap settings will be employed on subsequent flights to collect a variety of data demonstrating the capability of the flexible wings to withstand a real flight environment. The flaps have the potential to be retrofitted to existing airplane wings or integrated into new airframes.

“We have progressed from an innovative idea and matured the concept through multiple designs and wind tunnel tests, to a final demonstration that should prove to the aerospace industry that this technology is ready to dramatically improve aircraft efficiency,” said AFRL Program Manager Pete Flick, from Wright-Patterson Air Force Base, Ohio.

ACTE technology is expected to have far-reaching effects on future aviation. Advanced lightweight materials will reduce wing structural weight and give engineers the ability to aerodynamically tailor the wings to promote improved fuel economy and more efficient operations, while reducing environmental impacts.

“The first flight went as planned -- we validated many key elements of the experimental trailing edges,” said Thomas Rigney, ACTE Project Manager at Armstrong. “We expect this technology to make future aircraft lighter, more efficient, and quieter. It also has the potential to save hundreds of millions of dollars annually in fuel costs.”

RELEASE 14-311 Mars Spacecraft Reveal Comet Flyby Effects on Martian Atmosphere

Two NASA and one European spacecraft that obtained the first up-close observations of a comet flyby of Mars on Oct. 19, have gathered new information about the basic properties of the comet’s nucleus and directly detected the effects on the Martian atmosphere.

Data from observations carried out by NASA's Mars Atmosphere and Volatile Evolution (MAVEN) mission, NASA’s Mars Reconnaissance Orbiter (MRO), and a radar instrument on the European Space Agency's (ESA’s) Mars Express spacecraft have revealed that debris from the comet added a temporary and very strong layer of ions to the ionosphere, the electrically charged layer high above Mars. In these observations, scientists were able to make a direct connection from the input of debris from a specific meteor shower to the formation of this kind of transient layer in response; that is a first on any planet, including Earth.

Comet C/2013 A1 Siding Spring traveled from the most distant region of our solar system, called the Oort Cloud, and made a close approach around 2:27 p.m. EDT within about 87,000 miles (139,500 kilometers) of the Red Planet. This is less than half the distance between Earth and our moon and less than one-tenth the distance of any known comet flyby of Earth. Dust from the comet impacted Mars and was vaporized high in the atmosphere, producing what was likely an impressive meteor shower. This debris resulted in significant temporary changes to the planet’s upper atmosphere and possible longer-term perturbations. Earth-based and a host of space telescopes also observed the unique celestial object.

“This historic event allowed us to observe the details of this fast-moving Oort Cloud comet in a way never before possible using our existing Mars missions,” said Jim Green, director of NASA’s Planetary Science Division at the agency’s Headquarters in Washington. “Observing the effects on Mars of the comet's dust slamming into the upper atmosphere makes me very happy that we decided to put our spacecraft on the other side of Mars at the peak of the dust tail passage and out of harm's way.”

The MAVEN spacecraft, recently arrived at Mars, detected the comet encounter in two ways. The remote-sensing Imaging Ultraviolet Spectrograph observed intense ultraviolet emission from magnesium and iron ions high in the atmosphere in the aftermath of the meteor shower. Not even the most intense meteor storms on Earth have produced as strong a response as this one. The emission dominated Mars' ultraviolet spectrum for several hours after the encounter and then dissipated over the next two days.

MAVEN also was able to directly sample and determine the composition of some of the comet dust in Mars’ atmosphere. Analysis of these samples by the spacecraft’s Neutral Gas and Ion Mass Spectrometer detected eight different types of metal ions, including sodium, magnesium and iron. These are the first direct measurements of the composition of dust from an Oort Cloud comet. The Oort Cloud, well beyond the outer-most planets that surround our sun, is a spherical region of icy objects believed to be material left over from the formation of the solar system.

Elsewhere above Mars, a joint U.S. and Italian instrument on Mars Express observed a huge increase in the density of electrons following the comet's close approach. This instrument, the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), saw a huge jump in the electron density in the ionosphere a few hours after the comet rendezvous. This spike occurred at a substantially lower altitude than the normal density peak in the Martian ionosphere. The increased ionization, like the effects observed by MAVEN, appears to be the result of fine particles from the comet burning up in the atmosphere.

MRO’s Shallow Subsurface Radar (SHARAD) also detected the enhanced ionosphere. Images from the instrument were smeared by the passage of the radar signals through the temporary ion layer created by the comet's dust. SHARAD scientists used this smearing to determine that the electron density of the ionosphere on the planet's night side, where the observations were made, was five to 10 times higher than usual.

Studies of the comet itself, made with MRO's High Resolution Imaging Science Experiment (HiRISE) camera, revealed the nucleus is smaller than the expected 1.2 miles (2 kilometers). The HiRISE images also indicate a rotation period for the nucleus of eight hours, which is consistent with recent preliminary observations by NASA’s Hubble Space Telescope. MRO’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) also observed the comet to see whether signs of any particular chemical constituents stood out in its spectrum. Team members said the spectrum appears to show a dusty comet with no strong emission lines at their instrument’s sensitivity.

In addition to these immediate effects, MAVEN and the other missions will continue to look for long-term perturbations to Mars’ atmosphere.

MAVEN's principal investigator is based at the University of Colorado's Laboratory for Atmospheric and Space Physics in Boulder, and NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the mission. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the Mars Reconnaissance Orbiter. Mars Express is a project of the European Space Agency; NASA and the Italian Space Agency jointly funded the MARSIS instrument.

MEDIA ADVISORY M14-189 NASA Television to Provide Coverage of European Mission Comet Landing

NASA Television and the agency’s website will provide live coverage from 9-11:30 a.m. EST (6-8:30 a.m. PST) of the European Space Agency (ESA) Rosetta mission’s scheduled landing of a probe on a comet on Wednesday, Nov. 12.

NASA's live commentary will include excerpts of the ESA coverage and air from 9-10 a.m. NASA will continue carrying ESA's commentary from 10-11:30 a.m. ESA’s Philae (fee-LAY) lander is scheduled to touch down on comet 67P/Churyumov-Gerasimenko at 10:35 a.m. A signal confirming landing is expected at approximately 11:02 a.m.

After landing, Philae will obtain the first images ever taken from a comet's surface. It also will drill into the surface to study the composition and witness close up how a comet changes as its exposure to the sun varies. Philae can remain active on the surface for approximately two-and-a-half days. Its “mothership” is the Rosetta spacecraft that will remain in orbit around the comet through 2015. The orbiter will continue detailed studies of the comet as it approaches the sun and then moves away. NASA has three of the 16 instruments aboard the orbiter.

Comets are considered primitive building blocks of the solar system that are literally frozen in time. They may have played a part in "seeding" Earth with water and, possibly, the basic ingredients for life.