Mar 23 2016
From The Space Library
RELEASE 16-036 NASA Sends Fire, Meteor Experiments to International Space Station on Commercial Cargo Spacecraft
Scientific investigations of fire in microgravity and grippers inspired by geckos are among the nearly 7,500 pounds of cargo headed to the International Space Station aboard an Orbital ATK Cygnus spacecraft, along with equipment to support some 250 other experiments and studies aboard the world’s only orbital laboratory.
Orbital ATK’s fifth cargo delivery flight under its Commercial Resupply Services contract with NASA launched at 11:05 p.m. EDT Tuesday on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. The Cygnus is scheduled to arrive at the orbiting laboratory Saturday, March 26.
The station’s Expeditions 47 and 48 crews will employ these science payloads to support experiments in biology, biotechnology, physical science and Earth science – research that improves life on Earth -- including:
- Saffire-I provides a new way to study a large fire on an exploration craft, which has not been possible in the past because the risks for performing such studies on spacecraft with astronauts aboard are too high.
- Meteor will enable the first space-based observations of meteors entering Earth’s atmosphere from space.
- Strata-I could give us answers about how regolith behaves and moves in microgravity, how easy or difficult it is to anchor a spacecraft in regolith, how it interacts with spacecraft and spacesuit materials, and other important properties.
- The Gecko Gripper study tests a gecko-inspired adhesive gripping device that can stick on command in the harsh environment of space.
- The Additive Manufacturing Facility will add an upgraded 3-D printing capability to the station.
NASA astronaut and Expedition 46 Commander Tim Kopra will capture Cygnus at about 6:40 a.m. Saturday, March 26, using the space station's Canadarm2 robotic arm to take hold of the spacecraft. Astronaut Tim Peake of ESA (European Space Agency) will support Kopra in a backup position. NASA TV coverage of capture will begin at 5:30 a.m.
Saffire-1 will remain on the spacecraft once all the other supplies are unloaded, and the vehicle will be attached to the space station for about two months. Once it departs and the spacecraft is a safe distance from the space station, engineers will remotely conduct the first Saffire experiment before the Cygnus’ destructive reentry into Earth’s atmosphere. Before detaching from the station, Cygnus will also be filled with about 3,000 pounds of trash, which will be burned up over the Pacific Ocean.
This is the second flight of an enhanced Cygnus spacecraft, and the second using the Atlas V launch system. The cargo freighter features a greater payload capacity, supported by new fuel tanks and solar arrays, and an extended pressurized cargo module that increases the spacecraft’s interior volume by 25 percent, enabling more cargo to be delivered with each launch.
The space station is a convergence of science, technology and human innovation that demonstrates new technologies and makes research breakthroughs not possible on Earth. The space station has been continuously occupied since November 2000. In that time, it has been visited by more than 200 people and a variety of international and commercial spacecraft. The space station remains the springboard to NASA's next great leap in exploration, including future missions to an asteroid and Mars.
RELEASE 16-034 NASA Announces Dates for One of World’s Largest Hackathons
NASA’s open innovation incubator, the International Space Apps Challenge, will take place April 22-24. The global main stage for this year’s event will be in Pasadena, California, with local events taking place simultaneously in 193 locations spanning 72 countries.
On April 23 and 24, participants are asked to develop mobile applications, software, hardware, data visualizations and platform solutions that could contribute to space exploration missions and help improve life on Earth.
This year’s challenge will include a Data Bootcamp on April 22, streamed live from the global main stage. The bootcamp is open to the public and will give participants the opportunity to learn new skills with computer coding and data.
“We’re reaching out to women’s organizations influential in the data and maker communities to participate, and we encourage women-led teams in the hackathon,” said Deborah Diaz, chief technology officer for information technology.
More than 200 sources, including data sets, services and tools, will be available to challenge participants, which include techy-savvy citizens, scientists, entrepreneurs, educators, families and students to help solve problems and questions relevant to space exploration and broader subjects that impact life on Earth.
This year, NASA is offering 26 challenges in six mission-related categories: Aeronautics, Earth, International Space Station, Journey to Mars, Solar System and Beyond, and Space Technology.
RELEASE 16-039 NASA Gets Down to Earth This Year With Globe-Spanning Expeditions
NASA is sending scientists around the world in 2016 – from the edge of the Greenland ice sheet to the coral reefs of the South Pacific – to delve into challenging questions about how our planet is changing and what impacts humans are having on it.
While Earth science field experiments are nothing new for NASA, the next six months will be a particularly active period with eight major new campaigns taking researchers around the world on a wide range of science investigations. The public is invited to follow this journey of exploration online through NASA’s social media channels and the new Earth Expeditions webpage, which will feature regular video, photos and blog posts from these missions and other ongoing field activities.
“Combining the long-term global view from space with detailed measurements from field experiments is a powerful way of deciphering what’s happening in our world,” said Michael Freilich, director of NASA’s Earth Science Division in Washington. “Scientists worldwide use NASA Earth science field data together with satellite data and computer models to tackle many of today's environmental challenges and advance our knowledge of how the Earth works as a complex, integrated system.”
NASA uses the vantage point of space to increase our understanding of our home planet, improve lives, and safeguard our future with a fleet of orbiting satellites and instruments. To gain a more complete picture of how and why our planet is changing, NASA also sponsors intensive field studies targeting critical science issues that can benefit from a deeper look.
The first of the new projects, currently in the field, is an examination of the extent to which the oceans around Greenland are melting the edges of the ice sheet from below. The Oceans Melting Greenland (OMG) team is now conducting its first airborne survey of the ice edge around the entire coast of Greenland. This fall, they will return to measure coastal water temperatures by dropping sensors in the sea from a plane.
Air quality is the focus of the Korea U.S.-Air Quality (KORUS-AQ) campaign in South Korea, which begins in May. This joint study between NASA and the Republic of Korea will advance our ability to monitor air pollution from space, with coordinated observations from aircraft, ground sites, ships and satellites.
Also in May, the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) takes to the sea and air for the second year to study how the world’s largest plankton bloom gives rise to small organic particles that influence clouds and climate.
Throughout much of this year, teams of scientists working on the Arctic Boreal Vulnerability Experiment (ABoVE) will be in the tundra and forests of Alaska and northwestern Canada investigating the role of climate in wildfires, thawing permafrost, wildlife migration habits and insect outbreaks.
In June, the COral Reef Airborne Laboratory (CORAL) project team will begin testing airborne and in-water instruments in Hawaii to assess the condition of threatened coral-based ecosystems. CORAL’s next stop, in the fall, will be Australia’s Great Barrier Reef.
Three airborne research campaigns will take to the skies this summer, focusing on critical climate-related components of the atmosphere. Flying tracks over the Pacific and Atlantic oceans thousands of miles long, the team of the Atmospheric Tomography (ATom) mission will gather measurements on more than 200 different chemical species from the ocean surface up to approximately seven miles in the atmosphere to understand how the movement and transformation of short-lived greenhouse gases, such as ozone and methane, contribute to climate change.
Focusing on the skies over the eastern half of the United States, the Atmospheric Carbon and Transport – America (ACT-America) research team will track the movement of atmospheric carbon to better understand the sources and sinks of greenhouse gases. Flights will originate from Louisiana, Nebraska and Virginia.
The Observations of Clouds above Aerosols and their Interactions (ORACLES) study will use airborne instruments to probe the impact on climate and rainfall of the interaction between clouds over the southeastern Atlantic Ocean and smoke from massive vegetation burning in southern Africa. A better understanding of how the smoke particles alter stratocumulus clouds that play a key role in regional and global surface temperatures and precipitation will help improve current climate models.
KORUS-AQ and ABoVE originated from NASA’s ongoing research program in the Earth Science Division. The other six new experiments are the latest in a series of multi-year NASA Earth Venture Suborbital investigations selected in 2014. Earth Venture projects provide the U.S. scientific community with regular opportunities to accommodate new Earth science research priorities. Earth Venture is part of NASA's Earth System Science Pathfinder program managed at the agency’s Langley Research Center in Hampton, Virginia, for NASA's Science Mission Directorate in Washington.
Ancient Polar Ice Reveals Tilting of Earth’s Moon
polar hydrogen map of the moon’s northern and southern hemispheres This polar hydrogen map of the moon’s northern and southern hemispheres identifies the location of the moon’s ancient and present day poles. In the image, the lighter areas show higher concentrations of hydrogen and the darker areas show lower concentrations. Credits: James Keane, University of Arizona; Richard Miller, University of Alabama at Huntsville
Did the “man in the moon” look different from ancient Earth?
New NASA-funded research provides evidence that the spin axis of Earth’s moon shifted by about five degrees roughly three billion years ago. The evidence of this motion is recorded in the distribution of ancient lunar ice, evidence of delivery of water to the early solar system.
“The same face of the moon has not always pointed towards Earth,” said Matthew Siegler of the Planetary Science Institute in Tucson, Arizona, lead author of a paper in today’s journal Nature. “As the axis moved, so did the face of the ‘man in the moon.’ He sort of turned his nose up at the Earth.”
This interdisciplinary research was conducted across multiple institutions as part of NASA’s Solar System Exploration Research Virtual Institute (SSERVI) based at NASA’s Ames Research Center in Silicon Valley, California.
Water ice can exist on Earth’s moon in areas of permanent shadow. If ice on the moon is exposed to direct sunlight it evaporates into space. Authors of the Nature article show evidence that a shift of the lunar spin axis billions of years ago enabled sunlight to creep into areas that were once shadowed and likely previously contained ice.
The researchers found that the ice that survived this shift effectively “paints” a path along which the axis moved. They matched the path with models predicting where the ice could remain stable and inferred the moon’s axis had moved by approximately five degrees. This is the first physical evidence that the moon underwent such a dramatic change in orientation and implies that much of the polar ice on the moon is billions of years old.
“The new findings are a compelling view of the moon’s dynamic past,” said Dr. Yvonne Pendleton, director of SSERVI, which supports lunar and planetary science research to advance human exploration of the solar system through scientific discovery. “It is wonderful to see the results of several missions pointing to these insights.”
The authors analyzed data from several NASA missions, including Lunar Prospector, Lunar Reconnaissance Orbiter (LRO), Lunar Crater and Observation Sensing Satellite (LCROSS), and the Gravity Recovery and Interior Laboratory (GRAIL), to build the case for a change in the moon’s orientation. Topography from the Lunar Orbiter Laser Altimeter (LOLA) and thermal measurements from the Diviner lunar radiometer – both on LRO – are used to aid the interpretation of Lunar Prospector neutron data that support the polar wander hypothesis.
Siegler noticed that the distribution of ice observed at each of the lunar poles appeared to be more related to each other than previously thought. Upon further investigation, Siegler – and co-author Richard Miller of the University of Alabama at Huntsville – discovered that ice concentrations were displaced from each pole by the same distance, but in exactly opposite directions, suggesting the spin axis in the past was tilted from what we see today. A change in the tilt means that some of the ice deposited long ago has since evaporated as it was exposed to sunlight, but those areas that remain in permanent shadow between the old orientation and the new one retain their ice, and thus indicate what happened.
A planetary body can shift on its axis when there is a very large change in mass distribution. Co-author James Keane, of the University of Arizona in Tucson, modeled the way changes in the lunar interior would have affected the moon’s spin and tilt. In doing so, he found the Procellarum region on the lunar near-side was the only feature that could match the direction and amount of change in the axis indicated by the ice distributions near the poles. Furthermore, concentrations of radioactive material in the Procellarum region are sufficient to have heated a portion of the lunar mantle, causing a density change significant enough to reorient the moon.
Some of this heated mantle material melted and came to the surface to form the visible dark patches that fill large lunar basins known as mare. It’s these mare patches that give the man in the moon his “face.”
Siegler, Miller, and co-author David Lawrence of Johns Hopkins Applied Physics Laboratory in Laurel, Maryland are part of the Volatiles, Regolith and Thermal Investigations Consortium for Exploration and Science team, one of nine teams funded by SSERVI.
Said Siegler, “These findings may open the door to further discoveries on the interior evolution of the moon, as well as the origin of water on the moon and early Earth.”