Mar 9 2016

From The Space Library

Jump to: navigation, search

RELEASE 16-026 NASA Targets May 2018 Launch of Mars InSight Mission

NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission to study the deep interior of Mars is targeting a new launch window that begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018.

InSight’s primary goal is to help us understand how rocky planets – including Earth – formed and evolved. The spacecraft had been on track to launch this month until a vacuum leak in its prime science instrument prompted NASA in December to suspend preparations for launch.

InSight project managers recently briefed officials at NASA and France's space agency, Centre National d'Études Spatiales (CNES), on a path forward; the proposed plan to redesign the science instrument was accepted in support of a 2018 launch.

“The science goals of InSight are compelling, and the NASA and CNES plans to overcome the technical challenges are sound," said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. "The quest to understand the interior of Mars has been a longstanding goal of planetary scientists for decades. We’re excited to be back on the path for a launch, now in 2018.”

NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, will redesign, build and conduct qualifications of the new vacuum enclosure for the Seismic Experiment for Interior Structure (SEIS), the component that failed in December. CNES will lead instrument level integration and test activities, allowing the InSight Project to take advantage of each organization’s proven strengths. The two agencies have worked closely together to establish a project schedule that accommodates these plans, and scheduled interim reviews over the next six months to assess technical progress and continued feasibility.

The cost of the two-year delay is being assessed. An estimate is expected in August, once arrangements with the launch vehicle provider have been made.

The seismometer instrument's main sensors need to operate within a vacuum chamber to provide the exquisite sensitivity needed for measuring ground movements as small as half the radius of a hydrogen atom. The rework of the seismometer's vacuum container will result in a finished, thoroughly tested instrument in 2017 that will maintain a high degree of vacuum around the sensors through rigors of launch, landing, deployment and a two-year prime mission on the surface of Mars.

The InSight mission draws upon a strong international partnership led by Principal Investigator Bruce Banerdt of JPL. The lander's Heat Flow and Physical Properties Package is provided by the German Aerospace Center (DLR). This probe will hammer itself to a depth of about 16 feet (five meters) into the ground beside the lander.

SEIS was built with the participation of the Institut de Physique du Globe de Paris and the Swiss Federal Institute of Technology, with support from the Swiss Space Office and the European Space Agency PRODEX program; the Max Planck Institute for Solar System Research, supported by DLR; Imperial College, supported by the United Kingdom Space Agency; and JPL.

"The shared and renewed commitment to this mission continues our collaboration to find clues in the heart of Mars about the early evolution of our solar system," said Marc Pircher, director of CNES's Toulouse Space Centre.

The mission’s international science team includes researchers from Austria, Belgium, Canada, France, Germany, Japan, Poland, Spain, Switzerland, the United Kingdom and the United States.

JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. The InSight spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space Systems in Denver. It was delivered to Vandenberg Air Force Base, California, in December 2015 in preparation for launch, and returned to Lockheed Martin's Colorado facility last month for storage until spacecraft preparations resume in 2017.

NASA is on an ambitious journey to Mars that includes sending humans to the Red Planet, and that work remains on track. Robotic spacecraft are leading the way for NASA’s Mars Exploration Program, with the upcoming Mars 2020 rover being designed and built, the Opportunity and Curiosity rovers exploring the Martian surface, the Odyssey and Mars Reconnaissance Orbiter spacecraft currently orbiting the planet, along with the Mars Atmosphere and Volatile Evolution Mission (MAVEN) orbiter, which is helping scientists understand what happened to the Martian atmosphere.

NASA and CNES also are participating in ESA’s (European Space Agency's) Mars Express mission currently operating at Mars. NASA is participating on ESA’s 2016 and 2018 ExoMars missions, including providing telecommunication radios for ESA's 2016 orbiter and a critical element of a key astrobiology instrument on the 2018 ExoMars rover.

NASA's K2 mission: The Kepler Space Telescope's Second Chance to Shine

It was late August 2013, and the group of about five employees at Ball Aerospace in Boulder, Colorado, was waiting for NASA’s Kepler space telescope to reveal whether it would live or die. A severe malfunction had robbed the planet-hunting Kepler of its ability to stay pointed at a target without drifting off course.

The engineers had devised a remarkable solution: using the pressure of sunlight to stabilize the spacecraft so it could continue to do science. Now, there was nothing more they could do but wait for the spacecraft to reveal its fate.

“You’re not watching it unfold in real time,” said Dustin Putnam, Ball’s attitude control lead for Kepler. “You’re watching it as it unfolded a few minutes ago, because of the time the data takes to get back from the spacecraft.”

Finally, the team received the confirmation from the spacecraft they had been waiting for. The room broke out in cheers. The fix worked! Kepler, with a new lease on life, was given a new mission as K2. But the biggest surprise was yet to come. A space telescope with a distinguished history of discovering distant exoplanets – planets orbiting other stars – was about to outdo even itself, racking up hundreds more discoveries and helping to usher in entirely new opportunities in astrophysics research.

“Many of us believed that the spacecraft would be saved, but this was perhaps more blind faith than insight,” said Tom Barclay, senior research scientist and director of the Kepler and K2 guest observer office at NASA’s Ames Research Center in California's Silicon Valley. "The Ball team devised an ingenious solution allowing the Kepler space telescope to shine again."

The discoveries roll in

A little more than two years after the tense moment for the Ball engineers, K2 has delivered on its promise with a breadth of discoveries. Continuing the exoplanet-hunting legacy, K2 has discovered more than three dozen exoplanets and with more than 250 candidates awaiting confirmation. A handful of these worlds are near-Earth-sized and orbit stars that are bright and relatively nearby compared with Kepler discoveries, allowing scientists to perform follow-up studies. In fact, these exoplanets are likely future targets for the Hubble Space Telescope and the forthcoming James Webb Space Telescope (JWST), with the potential to study these planets’ atmospheres in search of signatures indicative of life.

K2 also has astronomers rethinking long-held planetary formation theory, and the commonly understood lonely "hot Jupiter" paradigm. The unexpected discovery of a star with a close-in Jupiter-sized planet sandwiched between two smaller companion planets now has theorists back at their computers reworking the models, and has sent astronomers back to their telescopes in search of other hot Jupiter companions.

“It remains a mystery how a giant planet can form far out and migrate inward leaving havoc in its wake and still have nearby planetary companions,” said Barclay.

Like its predecessor, K2 searches for planetary transits – the tiny, telltale dip in the brightness of a star as a planet crosses in front – and for the first time caught the rubble from a destroyed exoplanet transiting across the remains of a dead star known as a white dwarf. Exoplanets have long been thought to orbit these remnant stars, but not until K2 has the theory been confirmed.

K2 has fixed its gaze on regions of the sky with densely packed clusters of stars which has revealed the first transiting exoplanet in such an area, popularly known as the Hyades star cluster. Clusters are exciting places to find exoplanets because stars in a cluster all form around the same time, giving them all the same "born-on" date. This helps scientists understand the evolution of planetary systems.

The repurposed spacecraft boasts discoveries beyond the realm of exoplanets. Mature stars – about the age of our sun and older – largely populated the original single Kepler field of view. In contrast, many K2 fields see stars still in the process of forming. In these early days, planets also are assembled and by looking at the timescales of star formation, scientists gain insight into how our own planet formed.

Studies of one star-forming region, called Upper Scorpius, compared the size of young stars observed by K2 with computational models. The result demonstrated fundamental imperfections in the models. While the reason for these discrepancies is still under debate, it likely shows that magnetic fields in stars do not arise as researchers expect.

Looking in the ecliptic – the orbital path traveled around the sun by the planets of our solar system and the location of the zodiac – K2 also is well equipped to observe small bodies within our own solar system such as comets, asteroids, dwarf planets, ice giants and moons. Last year, for instance, K2 observed Neptune in a dance with its two moons, Triton and Nereid. This was followed by observations of Pluto and Uranus.

“K2 can’t help but observe the dynamics of our planetary system, " said Barclay. "We all know that planets follow laws of motion but with K2 we can see it happen.”

These initial accomplishments have come in the first year and a half since K2 began in May 2014, and have been carried off without a hitch. The spacecraft continues to perform nominally.

Searching for far out worlds

In April, K2 will take part in a global experiment in exoplanet observation with a special observing period or campaign, Campaign 9. In this campaign, both K2 and astronomers at ground-based observatories on five continents will simultaneously monitor the same region of sky towards the center of our galaxy to search for small planets, such as the size of Earth, orbiting very far from their host star or, in some cases, orbiting no star at all.

For this experiment, scientists will use gravitational microlensing – the phenomenon that occurs when the gravity of a foreground object, such as a planet, focuses and magnifies the light from a distant background star. This detection method will allow scientists to find and determine the mass of planets that orbit at great distances, like Jupiter and Neptune do our sun.

Design by community

What could turn out to be one of the most important legacies of K2 has little to do with the mechanics of the telescope, now operating on two wheels and with an assist from the sun.

The Kepler mission was organized along traditional lines of scientific discovery: a targeted set of objectives carefully chosen by the science team to answer a specific question on behalf of NASA – how common or rare are "Earths" around other suns?

K2’s modified mission involves a whole new approach-- engaging the scientific community at large and opening up the spacecraft's capabilities to a broader audience.

"The new approach of letting the community decide the most compelling science targets we’re going to look at has been one of the most exciting aspects," said Steve Howell, the Kepler and K2 project scientist at Ames. "Because of that, the breadth of our science is vast, including star clusters, young stars, supernovae, white dwarfs, very bright stars, active galaxies and, of course, exoplanets.”

In the new paradigm, the K2 team laid out some broad scientific objectives for the mission and planned to operate the spacecraft on behalf of the community.

Kepler’s field of view surveyed just one patch of sky in the northern hemisphere. The K2 ecliptic field of view provides greater opportunities for Earth-based observatories in both the northern and southern hemispheres, allowing the whole world to participate.

With more than two years of fuel remaining, the spacecraft’s scientific future continues to look unexpectedly bright.

Ames manages the Kepler and K2 missions for NASA’s Science Mission Directorate. NASA's Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

RELEASE 16-028 NASA Announces Winning Concepts to Further its Journey to Mars

NASA has announced the winners of two challenges to create new concepts for construction and human habitation on future space exploration missions, including the agency’s journey to Mars.

The Space Suit Textile Testing and In-Situ Materials Challenges, managed for NASA by NineSigma, launched in October 2015 under the umbrella of the NASA Tournament Lab, yielded innovative concepts for spacesuit testing and in-situ building materials use for habitat construction.

“These two challenges offered the opportunity to think about two basic needs of exploration – protective suits and building materials – in a new way,” said Steve Rader, deputy manager of NASA’s Center of Excellence for Collaborative Innovation (CoECI). “Our journey to Mars will require innovations in design and technology; opening our process up to the public gives us more creative paths to follow.”

The Space Suit Textile Testing Challenge offered three prizes of $5,000 for winning ideas on how to test the outer protective layer of spacesuit material for performance in different kinds of planetary environments, such as like Mars or large asteroids.

Winners for the Space Suit Textile Testing Challenge are:

  • Evaluating Space Suit Textile Abrasion in Planetary Environments -- Ahilan Anantha Krishnan
  • Cylindrical Abrasion Method -- Himel Barua, Thomas L. Collins, Riniah Foor, Evan Hess, Joey Stavale, Christopher Daniels, Heather Oravec, Janice Mather and M.J. Braun
  • Point-of-Failure Based System Using High Velocity Abrasives -- John Holler

The In-Situ Challenge sought solutions using surface materials like regolith -- crushed basalt rock -- for Earth and space fabrication and construction applications and offered a first-place prize of $10,000 and two second-place prizes of $2,500 for top submissions.

Using native materials for construction is tremendously beneficial for space exploration because in-situ regolith utilization (ISRU) reduces the need for materials to be shipped from Earth, along with the expense and resources this requires. ISRU could potentially save the agency more than $100,000 per kilogram to launch, making space pioneering more cost-effective and feasible.

The winners for the In Situ Challenge are:

  • 1st place: Planetary Fabrication of Complex Metallic/Ceramic Objects with In-Situ Resources -- Behrokh Khoshnevis
  • 2nd place: Cold Spray Technology Applied to Building and Repair -- David Espinosa and David Orlebeke
  • 2nd place: Simultaneous Exhaust-Enabled Ore Reduction, Separation and Processing -- Patrick Donovan

“We are proud to have connected NASA with innovators that have immediately viable technical solutions in a variety of disciplines to accelerate NASA’s goals,” said NineSigma CEO, Andy Zynga. We are also pleased to have created opportunities for winners of these challenges to collaborate with NASA in shaping the future of space exploration.”

CoECI was established with support from the White House Office of Science and Technology Policy to assist NASA and other federal agencies in using new tools – such as challenges – to solve tough, mission-critical problems. The center launches challenges under the umbrella of the NASA Tournament Lab and offers a variety of open innovation platforms that engage the crowdsourcing community in challenges to create the most innovative, efficient and optimal solutions for specific, real-world challenges.

MEDIA ADVISORY 16-07 Media, Public Invited to Visit NASA's James Webb Space Telescope Exhibit at 'South by Southwest' NASA is partnering with the Space Telescope Science Institute (STScI) and the Northrop Grumman Corporation to highlight the James Webb Space Telescope at South by Southwest (SXSW) from March 13 to 19, 2016. The Webb telescope exhibit will be located at the Austin Convention Center, 500 E. Cesar Chavez Street, Austin, Texas.

Free to the public, the Webb telescope exhibit in the Gaming Expo will show visitors how this incredibly complex telescope is being built, and will describe the amazing things we expect to learn about the universe. Visitors can talk with scientists and engineers who will share how Webb will inspire the next generation to push the boundaries of science and technology. The exhibit will feature a touchscreen displaying science visualizations and other videos, tablets with Webb apps and handouts.

The Webb telescope is NASA's top science program in development that will allow scientists to peer ever farther into the cosmos, seeing things no previous telescope has been able to see and explore the formation of the first stars and galaxies.

1. March 13 at 11 a.m. CST: SXSW Interactive Panel: “Extreme Science: NASA’s James Webb Space Telescope” Westin Austin Downtown, 301 E. 5th Street, Paramount 2-3. Panelists include:

  • Amber Straughn, astrophysicist, NASA's Goddard Space Flight Center, Greenbelt, Maryland
  • Blake Bullock, director at Northrop Grumman Aerospace Systems
  • Joel Green, astrophysicist and project scientist at the Space Telescope Science Institute
  • Sarah Kendrew, astronomer at ESA (European Space Agency).

http://schedule.sxsw.com/2016/events/event_PP52001 (Badge holders)

2. March 13 to 16: Webb telescope material and presenters at the NASA Exhibit in the SXSW Trade Show Austin Convention Center, Exhibit Halls 2, 3 and 4, 500 E. Cesar Chavez Street. http://www.sxsw.com/exhibitions/trade-show (Badge holders)

3. March 17 to 19: Large Webb telescope Exhibit at SXSW Gaming Expo Austin Convention Center, Southside, Exhibit Halls 1 and 2.

http://www.sxsw.com/exhibitions/gaming-expo (Free and open to the public)